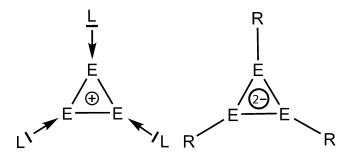


Boron Coordination

International Edition: DOI: 10.1002/anie.201509826 German Edition: DOI: 10.1002/ange.201509826

The $[B_3(NN)_3]^+$ and $[B_3(CO)_3]^+$ Complexes Featuring the Smallest π -Aromatic Species B_3^+


Jiaye Jin, Guanjun Wang, Mingfei Zhou,* Diego M. Andrada, Markus Hermann, and Gernot Frenking*

Dedicated to Professor Herbert W. Roesky on the occasion of his 80th birthday

Abstract: We report the spectroscopic identification of the $[B_3(NN)_3]^+$ and $[B_3(CO)_3]^+$ complexes, which feature the smallest π -aromatic system B_3^+ . A quantum chemical bonding analysis shows that the adducts are mainly stabilized by $L \rightarrow [B_3L_2]^+$ σ -donation.

Much progress has been made in recent years in the synthesis of one- and two-center boron species that exhibit unusual chemical bonds. A tricoordinated borylene complex CAAC→B(H)←CAAC, where boron atom is a Lewis base that is stabilized by carbene ligands (CAAC = cyclic alkyl amino carbene), was synthesized by Bertrand and co-workers.^[1] The related dicarbonyl complex $OC \rightarrow B(R) \leftarrow CO$ (R = bulky aryl group) was recently reported by Braunschweig et al. [2] The same group isolated diatomic B_2 in the NHC $\rightarrow B \equiv$ B←NHC (NHC=N-heterocyclic carbene) complex, which features a boron-boron triple bond. [3,4a] They also synthesized the related adducts $NHC^s \rightarrow B \equiv B \leftarrow NHC^s$ ($NHC^s = saturated$ NHC)^[4b] and CAAC \rightarrow B \equiv B \leftarrow CAAC.^[4c] The variation of the π -acceptor strength of the carbene ligands L modulates the $L\leftarrow B\equiv B\rightarrow L$ π -backdonation, and correlates nicely with the B-B bond lengths in the complexes^[4] which supports the model of dative bonding.^[5] Prior to this, the dicarbonyl complexes $OC \rightarrow B \equiv B \leftarrow CO$ and $[OB \rightarrow B \equiv B \leftarrow BO]^{2-}$, which are molecules with all-triple bonds, [6] have been experimentally observed.^[7]

We now report the extension of stabilizing one- and twocenter boron species $L \rightarrow B_n \leftarrow L$ with donor-ligands L to three-center cyclic boron complexes $[B_3(NN)_3]^+$ and $[B_3-(CO)_3]^+$ where the cyclic B_3^+ cation is ligated by three N_2 and CO ligands, respectively. The eight valence-electron species B_3^+ has two π -electrons which are delocalized over the threemembered ring and thus, it is the smallest π -aromatic system that has been spectroscopically characterized. The related NHC complex [B₃(NHC)₃]⁺ was the subject of a previous theoretical study, [8] but it was not observed until now. The molecules $[B_3(NN)_3]^+$ and $[B_3(CO)_3]^+$ are the first threecenter complexes of main-group atoms that are stabilized through dative bonds by CO and N₂. Heavier group-13 homologues of gallium have been synthesized as salt compounds $[Ga_3R_3][M_2]$ (M=Na, K; R=bulky aryl group), which were the first cyclogallanes that were structurally characterized. [9] The related aluminum systems [Al₃R₃][M₂] have also been isolated.^[10] Theoretical studies of the parent systems $[E_3H_3]^{2-}$ (E = B, Al, Ga) showed that the dianions are 2π -aromatic species, [9b,11] similar to the cation $[B_3L_3]^+$. The $[E_3R_3][M_2]$ (E = Al, Ga) systems have E-R electron-sharing bonds, while $[B_3L_3]^+$ has donor-acceptor bonds. Figure 1 displays the bonding situation in $[E_3R_3]^{2-}$ and $[B_3L_3]^+$.

Figure 1. Representation of the bonding situation in a) cyclic group-13 cation complex $[E_3L_3]^+$ which has $L \rightarrow E$ dative bonds, and b) cyclic group-13 dianion which has R-E electron-sharing bonds. Both systems are 2π -aromatic species.

The boron–dinitrogen and boron–carbonyl cation complexes were generated in the gas phase using a pulsed laser vaporization/supersonic expansion ion source, and were studied by infrared photodissociation spectroscopy in the ligand-stretching vibrational frequency region as described previously. A typical mass spectrum of boron dinitrogen cation complexes produced using a ¹¹B target in the m/z range of 60–160 is shown in Figure 2a. The spectrum is dominated by mononuclear BN_n^+ (n=5–10) cation complexes. Peaks owing to $[B_2(NN)_3]^+$ and $[B_3(NN)_3]^+$ are the most intense multinuclear species in the mass spectra. The $[B_3(NN)_3]^+$

Collaborative Innovation Center of Chemistry for Energy Materials

Department of Chemistry

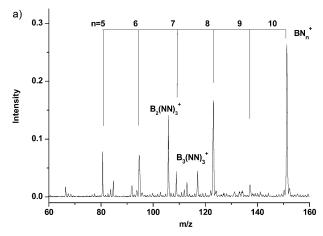
Shanghai Key Laboratory of Molecular Catalysts and

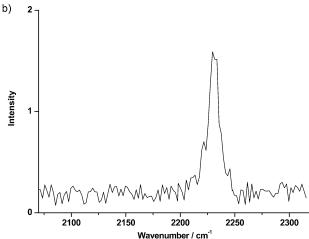
Innovative Materials

Fudan University

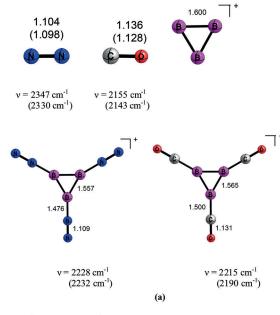
Shanghai 200433 (China)

E-mail: mfzhou@fudan.edu.cn


Dr. D. M. Andrada, Dr. M. Hermann, Prof. G. Frenking Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse, 35043 Marburg (Germany) E-mail: frenking@chemie.uni-marburg.de


Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201509826.

^[*] J. Jin, Prof. G. Wang, Prof. M. Zhou


Figure 2. a) Mass spectrum of the boron–nitrogen cation complexes. The cations are formed by pulsed laser vaporization of a boron-11 target in an expansion of helium doped with dinitrogen. b) Experimental IR spectrum of the $[B_3(NN)_3]^+$ cation complex. The spectrum is measured by monitoring the N_2 fragmentation channel leading to the formation of $[B_3(NN)_2]^+$.

cation is mass-selected for infrared photodissociation. When the infrared laser is on resonance with one of the vibrational fundamentals of the cation complex, it photodissociates by losing one N_2 ligand with low efficiency (less than 2%). The signal detected is likely due to a multiphoton process, which is not expected to be very efficient at the low laser pulse energies used here (about 2 mJ/pulse). The resulting infrared photodissociation spectrum of $[B_3(NN)_3]^+$ is shown in Figure 2b. The experimental spectrum exhibits a single band centered at 2232 cm⁻¹, indicating a high symmetric structure. The band position is shifted by 98 cm⁻¹ to the red from the frequency of gas phase N_2 (2330 cm⁻¹). [13]

The mass spectrum of boron-carbonyl cation complexes in the m/z range of 60–160 is shown in Figure S1. The most intense peaks correspond to $[B(CO)_3]^+$ and $[B_2(CO)_4]^+$, suggesting that these cations are formed preferentially. The $[B_3(CO)_3]^+$ cation complex is also formed with appreciable intensity. It dissociates by losing a CO ligand when excited with infrared light around the 2190 cm⁻¹ frequency region, but the dissociation efficiency (less than 0.5%; Supporting Information, Figure S2) is too low to achieve an effective

spectrum, indicating that this cation has a higher binding energy than that of $[B_3(NN)_3]^+$. Nevertheless, the recorded signal of 2190 cm⁻¹ for the C–O stretching mode suggests a blue shift of 47 cm¹ relative to free CO (2143 cm⁻¹). [13]

We carried out high-level ab initio calculations of $[B_3-(NN)_3]^+$ and $[B_3(CO)_3]^+$ using coupled-cluster theory at the CCSD(T)/cc-pVTZ level^[14] to validate the identity of the cations and to analyze their electronic structure. Figure 3 a shows the theoretically predicted geometries of the two complexes and the fragments (X^1A_1') B_3^+ , N_2 , and CO. The calculated bond lengths of the diatomic species agree very well with experimental data. Previous theoretical studies showed that B_3^+ has a D_{3h} equilibrium geometry and an X^1A_1' electronic ground state.^[15] Alexandrova and co-workers

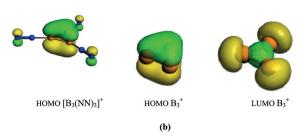


Figure 3. a) Calculated (experimental) equilibrium geometries of the complexes $[B_3(NN)_3]^+$ and $[B_3(CO)_3]^+$ and the fragments $(X^1A_1')\ B_3^+$, N_2 , and CO at CCSD(T)/cc-pVTZ. Bond lengths are given in Å. Calculated (experimental) vibrational frequencies of the N-N and C-O stretching modes at LCCSD(T)/cc-pVTZ. Experimental values for N_2 and CO were taken from Ref. [13]. Calculated bond dissociation energies D_e and D_o at CCSD(T)/cc-pVTZ. The zero-point energy corrections were taken from LCCSD(T)/cc-pVTZ calculations. b) Plot of molecular orbitals at BP86/TZ2P+: HOMO of $[B_3(NN)_3]^+$, HOMO of $(X^1A_1')\ B_3^+$ and LUMO of $(X^1A_1')\ B_3^+$.

mention in a review about neutral and charged all-boron clusters ${\rm B}_n^{\ q}$ (n=2–6) that ${\rm B}_3^{+}$ is a 2π -aromatic species. [16]

The calculations suggest that the B–B lengths in the complexes $[B_3L_3]^+$ are significantly shorter (1.557 Å for $L=N_2$ and 1.565 Å for L=CO) than in free B_3^+ (1.600 Å). Also, the N–N bonds in $[B_3(NN)_3]^+$ (1.109 Å) are a bit longer than in N_2 (1.104 Å), while the C–O bond in $[B_3(CO)_3]^+$ becomes a bit shorter (1.131 Å) compared with CO (1.136 Å). We calculated the vibrational spectra of the complexes using local coupled-cluster theory at the LCCSD(T)/cc-pVTZ level, $^{[14]}$ because frequency calculations at CCSD(T)/cc-pVTZ are not feasible for us. The optimized geometries of the

molecules at LCCSD(T)/cc-pVTZ are very similar to the CCSD(T)/cc-pVTZ structures (Supporting Information). The computed stretching modes at LCCSD(T)/cc-pVTZ are in agreement with the changes of the bond lengths in $[B_3L_3]^+$: a red shift of the highest-lying IR active N-N stretching $mode^{[17]}$ of $\Delta \nu = 119 \text{ cm}^{-1}$ for $[B_3(NN)_3]^+$, while the C-O stretching frequency of [B₃(CO)₃]⁺ exhibits a blue-shift by $\Delta \nu = 60 \text{ cm}^{-1}$ (Figure 3). The excellent agreement of the size and the direction of the C-O and N-N frequency shifts Δv strongly supports the assignment of the complexes $[B_3(NN)_3]^+$ and $B_3(CO)_3^+$ to the spectroscopic data. The complete data of the calculated vibrational frequencies are given in the Supporting Information (Table S1). Figure 3 also shows the calculated bond dissociation energies (BDEs) for loss of one or three ligands L from $[B_3L_3]^+$. The calculations suggest that the CO ligands are more strongly bonded than N_2 , which agrees with the smaller efficiency of the photodissociation.

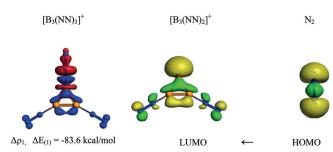

Figure 3 b shows a plot of the highest occupied molecular orbital (HOMO) of $[B_3(NN)_3]^+$ which resembles the undisturbed HOMO of naked (X^1A_1') B_3^+ that is also shown. The equivalent HOMO of $[B_3(CO)_3]^+$ looks very similar (Supporting Information, Figure S3). The shape of the HOMO indicates that the all-boron systems B_3^+ and $[B_3L_3]^+$ are two π -electron aromatic species. We estimated the aromaticity in the molecules with the nuclear independent chemical shift (NICS) method^[18] and compared it with the classical two π -electron aromatic cyclopropenyl cation $C_3H_3^+$. The calculated NICS(1) values, which were suggested as reliable indicators of aromaticity in non-fused cyclic systems,^[19] predict that allboron cations possess significant aromatic character with decreasing order B_3^+ (-18.4 ppm) $> C_3H_3^+$ (-14.6 ppm) $> [B_3(CO)_3]^+$ (-13.2 ppm) $> [B_3(NN)_3]^+$ (-11.6 ppm).^[20]

Figure 3 b shows the lowest unoccupied molecular orbital (LUMO) of naked (X^1A_1') B_3^+ , which is perfectly suited for $L_3 \rightarrow B_3^+$ σ -donation. We analyzed the nature of the donoracceptor bonds of $[B_3(NN)_3]^+$ and $[B_3(CO)_3]^+$ with the energy decomposition analysis with natural orbitals of chemical valence (EDA-NOCV)^[21] method. The numerical results are given in Table 1. The strongest attraction between the ligand and the remaining fragment $L \rightarrow [B_3L_2]^+$ comes from the orbital interactions $\Delta E_{\rm orb}$. The largest contribution to $\Delta E_{\rm orb}$ arises from the σ -donation of the lone-pair orbitals of the ligands N_2 and CO to the LUMO of (X^1A_1') B_3^+ . This is nicely shown in Figure 4 which depicts the deformation

Table 1: Energy decomposition analysis of $[B_3L_3]^+$ at the BP86/TZ2P+ level using CCSD(T)/cc-pVTZ optimized geometries. Energy values are given in kcal mol⁻¹.

Fragments	$[B_3(NN)_2]^+ + N_2$	$[B_3(CO)_2]^+ + CO$
$\Delta E_{ m int}$	-50.7	-76.9
ΔE_{Pauli}	171.6	202.4
$\Delta E_{elstat}^{[a]}$	-79.3 (35.6%)	-100.2 (35.9%)
$\Delta E_{orb}^{[a]}$	-143.0 (64.3%)	-179.1 (64.1%)
$\Delta E_{\text{orb}} (1)^{[b]} L \rightarrow [B_3(L)_2]^+ \sigma$ -donation	-83.6 (58.5%)	-112.3 (62.7%)
ΔE_{orb} (2) ^[b] L \leftarrow [B ₃ (L) ₂] ⁺ π_{\parallel} -backdonation	-20.3 (14.2%)	-26.7 (14.9%)
ΔE_{orb} (3) ^[b] L \leftarrow [B ₃ (L) ₂] ⁺ π_{\perp} -backdonation	-18.5 (12.9%)	-19.6 (10.9%)
$\Delta E_{\text{orb}}(\text{rest})^{[b]}$ polarization	-20.6 (14.4%)	-20.5 (12.2%)

[a] The value in parentheses gives the percentage contribution to the total attractive interactions $\Delta E_{\text{elstat}} + \Delta E_{\text{orb}}$. [b] The value in parentheses gives the percentage contribution to the total orbital interactions ΔE_{orb} .

Figure 4. Plot of the deformation densities $\Delta \rho$ of the pairwise orbital interactions between $[B_3(NN)_2]^+$ and N_2 in $[B_3(NN)_3]^+$ and associated stabilization energies ΔE in kcal mol⁻¹. The color code of the charge flow is red \rightarrow blue. Shape of the most important interacting orbitals of $[B_3(NN)_2]^+$ and N_2 .

density $\Delta \rho$ that is associated with the σ -donation NN \rightarrow [B₃(NN)₂]⁺ in the dinitrogen complex. The color code for the charge flow is red-blue. The connected donor and acceptor orbitals of the fragments N_2 and $[B_3(NN)_2]^+$ are also shown in Figure 4. The shape of the deformation densities and the associated orbitals reveal that the $NN \rightarrow [B_3(NN)_2]^+$ σ -donation enhances also the B-B bonding in the ring which explains the bond shortening with respect to free (X^1A_1) B_3^+ . Note that the $L \leftarrow [B_3L_2]^+$ π -backdonation (Table 1) which comes from the in-plane π_{\parallel} orbital is stronger (-20.3 kcal mol⁻¹ for $L = N_2$ and $-26.7 \text{ kcal mol}^{-1}$ for L = CO) than the contribution of the out-of-plane π_{\perp} MO (-18.5 kcal mol⁻¹ for L = N₂ and $-19.6 \text{ kcal mol}^{-1}$ for L = CO) which is the source of the aromaticity. The deformation densities $\Delta \rho$ and the associated fragments orbitals for the $L \leftarrow [B_3(NN)_2]^+$ π -backdonation and the donation and backdonation in $[B_3(CO)_3]^+$ are shown in the Supporting Information (Figure S4).

The elongation of the N–N bonds in the complex $[B_3-(NN)_3]^+$ relative to free N_2 can be explained with the N–N bonding nature of the σ -donor orbital and the antibonding π^* -acceptor orbital of dinitrogen. The bond-shortening of the C–O bond in non-classical carbonyl complexes, $^{[23]}$ where CO is mainly a σ -donor, has been shown to come from the change in the polarization of the orbitals when electronic charge is withdrawn from the carbon atom. $^{[24]}$ A similar effect has recently been observed in the complex $[OC(BeCO_3)]$, where the origin of the C–O bond shortening was discussed in detail. $^{[22]}$ The atomic partial charges of the NBO method $^{[25]}$

Communications

agree with the strong σ -donation in the complexes. The partial charge at the cyclic B_3 moiety is -0.06 e in $[B_3(NN)_3]^+$, which indicates that the positive charge of the cation is completely localized at the more electronegative dinitrogen ligands. Even stronger donation $3CO \rightarrow B_3^+$ is found in the tricarbonyl complex $[B_3(CO)_3]^+$, where the partial charge of B_3 is -0.38 e.

It is illuminating to compare the bonding situation in B₃⁺ and $[B_3L_3]^+$ with B_3^- . The latter anion has two more electrons than the cation, and thus the LUMO of B₃⁺ (Figure 3b) is occupied in B₃ where it becomes the HOMO. The latter orbital has been declared as the source of σ aromaticity, because it is a delocalized 2 σ electron system that apparently agrees with the 4n + 2 rule. [16,26] Therefore, it is claimed that $B_3^{\; -}$ is a double (σ and $\pi)$ aromatic species, while $B_3^{\; +}$ exhibits 2π aromaticity but no σ aromaticity. [16,27] It may now be argued that $[B_3L_3]^+$ also possesses some σ aromaticity, because the L→B interaction leads to partial occupation of the LUMO of B₃⁺. We refrain from discussing the possible degree of σ aromaticity in [B₃L₃]⁺ because we are not convinced that the stabilization has a genuine aromatic origin. There is no doubt that there is some stabilization in the B₃⁺ fragment of the complex that comes from the partial occupation of the delocalized LUMO of the cation. This can be seen from the shortening of the B-B bonds. However, delocalization does not automatically indicate aromaticity. The B_3^- has a total of four doubly occupied σ orbitals, which makes it an 8σ electron system that would be an antiaromate according to the Hückel rule. It is somewhat artificial to discard the three lower-lying σ orbitals and to declare it a 2 σ aromate. But there is no doubt that $[B_3(NN)_3]^+$ and $[B_3(CO)_3]^+$ are genuine 2 π aromatic species.

After this manuscript was submitted, a work by Braunschweig and co-workers appeared that reported the synthesis of the triboracyclopropenyl dianion $[B_3(NCy)_3]^{2^-}$ $(Cy=cyclo-C_6H_{11})$ which was isolated as the dimeric salt $(Na_4[B_3-(NCy)_3]_2\cdot 2DME)$ where $DME=1,2\text{-dimethoxyethane.}^{[28]}$ The molecule is the boron analogue of the heavier systems $[E_3R_3][\mathtt{M}_2]$ $(E=Al,\ Ga).^{[9,10]}$ The bonding analysis gave clear evidence that $[B_3(NCy)_3]^{2^-}$ is a Hückel 2π aromate. The latter dianion and the $[B_3L_3]^+$ cations that are reported here exhibit the bonding situations that are shown in Figure 1. They are examples of the lightest possible main-group element Hückel π aromate. $^{[29]}$ It is interesting that the 2π aromaticity is found in both the eight-electron cation B_3^+ and in the eleven-electron dianion $B_3^{2^-}$.

In summary, we report the first spectroscopic identification of the complexes $[B_3(NN)_3]^+$ and $[B_3(CO)_3]^+$, which feature the smallest $\pi\text{-aromatic}$ system B_3^+ . A quantum chemical bonding analysis shows that the adducts are mainly stabilized by $L\!\to\![B_3L_2]^+$ $\sigma\text{-donation}.$ The results may be considered as exploration of a new field of ligand-stabilized boron complexes B_3L_3 , which may be extended to main-group adducts E_nL_n with other atoms and ligands and larger cycles.

Acknowledgements

The work at Shanghai was supported by the Ministry of Science and Technology of China (2013CB834603 and

2012YQ220113-3) and the National Natural Science Foundation of China (grant no. 21433005). The work at Marburg was supported by the Deutsche Forschungsgemeinschaft.

Keywords: aromaticity · bonding analysis · coordination chemistry · photodissociation · physical chemistry

How to cite: Angew. Chem. Int. Ed. **2016**, 55, 2078–2082 Angew. Chem. **2016**, 128, 2118–2122

- R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking, G. Bertrand, Science 2011, 333, 610.
- [2] a) H. Braunschweig, R. D. Dewhurst, F. Hupp, M. Nutz, K. Radacki, C. W. Tate, A. Vargas, Y. Ye, *Nature* 2015, 522, 327;
 b) G. Frenking, *Nature* 2015, 522, 297.
- [3] The assignment of a BB triple bond was challenged by: a) R. Köppe, H. Schnöckel, *Chem. Sci.* 2015, 6, 1199; The arguments in that paper were shown to be faulty by: b) N. Holzmann, M. Hermann, G. Frenking, *Chem. Sci.* 2015, 6, 4089; See also: c) J. Böhnke, H. Braunschweig, P. Constantinidis, T. Dellermann, W. C. Ewing, I. Fischer, K. Hammond, F. Hupp, J. Mies, H.-C. Schmitt, A. Vargas, *J. Am. Chem. Soc.* 2015, 137, 1766; d) F. A. Perras, W. C. Ewing, T. Dellermann, J. Böhnke, S. Ulrich, T. Schäfer, H. Braunschweig, D. L. Bryce, *Chem. Sci.* 2015, 6, 3378.
- [4] a) H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas, *Science* 2012, 336, 1420; b) J. Böhnke, H. Braunschweig, W. C. Ewing, C. Hörl, T. Kramer, I. Krummenacher, J. Mies, A. Vargas, *Angew. Chem. Int. Ed.* 2014, 53, 9082; *Angew. Chem.* 2014, 126, 9228; c) J. Böhnke, H. Braunschweig, T. Dellermann, W. C. Ewing, K. Hammond, T. Kramer, J. O. C. Jimenez-Halla, J. Mies, *Angew. Chem. Int. Ed.* 2015, 54, 13801–13805; *Angew. Chem.* 2015, 127, 14006–14010.
- [5] G. Frenking, Angew. Chem. Int. Ed. 2014, 53, 6040; Angew. Chem. 2014, 126, 6152.
- [6] L. C. Ducati, N. Takagi, G. Frenking, J. Phys. Chem. A 2009, 113, 11693.
- [7] a) M. Zhou, N. Tsumori, Z. Li, K. Fan, L. Andrews, Q. Xu, J. Am. Chem. Soc. 2001, 123, 12936; b) S. Li, H. Zhai, L. Wang, J. Am. Chem. Soc. 2008, 130, 2573.
- [8] T. B. Tai, M. T. Nguyen, Angew. Chem. Int. Ed. 2013, 52, 4554; Angew. Chem. 2013, 125, 4652.
- [9] a) X.-W. Li, W. T. Pennington, G. H. Robinson, J. Am. Chem. Soc. 1995, 117, 7578; b) X.-W. Li, Y. Xie, P. Schreiner, K. D. Gripper, R. C. Crittendon, C. Campana, H. F. Schaefer III, G. H. Robinson, Organometallics 1996, 15, 3798.
- [10] R. J. Wright, M. Brynda, P. P. Power, Angew. Chem. Int. Ed. 2006, 45, 5953; Angew. Chem. 2006, 118, 6099.
- [11] X. Li, J. Sun, Y. Zeng, Z. Sun, S. Zheng, L. Meng, J. Phys. Chem.
- A 2012, 116, 5491.
 [12] G. J. Wang, C. X. Chi, X. P. Xing, C. F. Ding, M. F. Zhou, Sci.
- China Chem. **2014**, 57, 172. [13] K. P. Huber, G. Herzberg, Constants of Diatomic Molecules, Van
- Nostrand-Reinhold, New York, **1979**. [14] See the Supporting Information for the details of the calcula-
- [15] C. L. Yang, Z. H. Zhu, *J. Mol. Struct.* **2001**, *571*, 225.
- [16] A. N. Alexandrova, A. I. Boldyrev, H.-J. Zhai, L.-S. Wang, Coord. Chem. Rev. 2006, 250, 2811.
- [17] There is one degenerate N-N and C-O stretching mode in the complexes that is IR active, and one non-degenerate stretching mode that is IR inactive. See the Supporting Information for the full spectra.
- [18] P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. von Hommes, J. Am. Chem. Soc. 1996, 118, 6317.
- [19] P. v. R. Schleyer, H. Jiao, N. J. R. von Hommes, V. G. Malkin, O. L. Malkina, J. Am. Chem. Soc. 1997, 119, 12669.

2081

Communications

- [20] A theoretical study by Tsipis et al. suggested that cyclic B₃⁺ is actually a σ-aromatic compound. The conclusion was made on the basis of the NICS_{zz} scan of the molecule, which is symmetric around the z-axis that is perpendicular to the molecular plane: A. C. Tsipis, I. G. Depastas, C. A. Tsipis, Symmetry 2010, 2, 284. We rather consider B₃⁺ to be a 2π aromate, because the molecule has a delocalized π orbital which is occupied by two electrons.
- [21] A. Michalak, M. Mitoraj, T. Ziegler, J. Phys. Chem. A 2008, 112, 1933.
- [22] For a recent application of the EDA-NOCV method to a related carbonyl complex see: M. Chen, Q. Zhang, M. Zhou, D. M. Andrada, G. Frenking, *Angew. Chem. Int. Ed.* 2015, 54, 124; *Angew. Chem.* 2015, 127, 126.
- [23] A. J. Lupinetti, G. Frenking, S. H. Strauss, Angew. Chem. Int. Ed. 1998, 37, 2113; Angew. Chem. 1998, 110, 2229.
- [24] A. J. Lupinetti, G. Frenking, S. H. Strauss, J. Phys. Chem. A 1997, 101, 9551.
- [25] C. R. Landis, F. Weinhold, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, Cambridge, 2005.
- [26] A. E. Kuznetsov, A. I. Boldyrev, Struct. Chem. 2002, 13, 141.
- [27] A. I. Boldyrev, L. S. Wang, Chem. Rev. 2005, 105, 3716.

- [28] T. Kupfer, H. Braunschweig, K. Radacki, Angew. Chem. Int. Ed. 2015, 54, 15084; Angew. Chem. 2015, 127, 15299.
- [29] One referee objected to the classification of [B₃L₃]⁺ as "the lightest possible main-group element Hückel π aromate" that was synthesized, because the inclusion of the ligand atoms L makes the compounds [B₃(NN)₃]⁺ and [B₃(CO)₃]⁺ bigger than the deltate anion [C₃O₃]²⁻ reported earlier by West et al. We disagree, because the aromaticity in [B₃L₃]⁺ is due to the electronic structure of the core moiety B₃⁺ where the ligands L serve merely to stabilize the aromatic cation. In contrast, the aromaticity in [C₃O₃]²⁻ requires the presence of the oxygen atoms whose π-interactions are necessary to make the ion being a π aromate: R. West, D. Eggerding, J. Perkins, D. Handy, E. C. Tuazon, *J. Am. Chem. Soc.* 1981, 103, 1633; X. Bao, X. Zhou, C. F. Lovitt, A. Venkatram, D. A. Hrovat, R. Gleiter, R. Hoffmann, W. T. Borden, *J. Am. Chem. Soc.* 2013, 135, 10259, and references therein

Received: October 20, 2015 Revised: December 7, 2015 Published online: January 6, 2016